Dice Coach & Instructors / Newsletter / Contact / Home

  

 

   
 

Dice Setter
Digest

   
 

Dice Setter

Newsletters

   
 

 Your Instructors

 

 

 

Events

 

 

 

Dice Setting

   
 

Basic Rules

   
 

Testimonials

   
 

Dice Setter  Archives

 

 

 

Mad Professor

Speaks

 

 

 

Playbooks

   
 

Craps Strategies

 

 

 

Featured Article

   
 

Craps Table Plans

   
 

Private Lessons

   
 

Casino Dice Survey

     
  Dice Discussions  
     
 

Craps Book

 
 

 

 

Best and Worst

 

 

 

Contributing Authors

   
 

Message Board

   
 

Links 

   
 

Subscribe

 

 

 

Legal

   

 

Regression Avoids Depression
Part IV

Reconciling Win-Rate With Roll-Survival Rate

If we look at strictly flat-betting a wager like $22-Inside, we know that it takes several hits to pay for itself before finally emerging with a profit:

 

$22-Inside  Payout Rate

 

Inside-Number Hits

Total Investment

Payout

Return on Investment

Profit

0

$22

$0

0%

(-$22)

1

-

$7

31.8%

(-$15)

2

-

$7

63.6%

(-$8)

3

-

$7

95.4%

(-$1)

4

-

$7

127.2%

$6

 

 

 

 

 

 

 

For a straight, non-pressed, non-regressed $22-Inside wager, it takes four winning hits before it pays for itself and delivers a profit.  Unfortunately, when using that method, a random-roller always stays on the negative side of the equation because the Inside-Numbers-to-Sevens Ratio is 3:1, and it takes more than three hits just to earn your money back.

Likewise, it is important to note that our roll-duration and bet-survival rate is almost opposite to each other. 

       The longer (the more rolls) it takes for a flat-bet like $22-Inside to pay for itself; the more likely it is to fall short of producing a net-profit.  

 

       By the same token, the higher our Sevens-to-Rolls Ratio is, the longer our bets can stay out on the layout to produce a net-profit.

 

       The lower and closer our SRR is to random; then the more condensed our time to harvest a net-profit will be.

 

Simply stated, a higher SRR gives us more rolls to work with, while a lower SRR reduces our useable number of point-cycle rolls.

The primary way to ascertain the appropriate regression-point in our hand is determined by our Sevens-to-Roll ratio, simply because our SRR is the chief determinant of how long, on average, our point-cycle will last.

 

This Won’t Take Long…Did It

Again, when measured on a per-roll basis, our ability to avoid the 7 remains constant. 

Sevens Appearance Rate

 

Random SRR 6

SRR 7

SRR 8

SRR 9

Appearance Ratio

1-in-6

1-in-7

1-in-8

1-in-9

Probability

16.67%

14.29%

12.5%

11.11%

7’s-per-36 rolls

6

5.14

4.5

4

 

       For a random-roller, it remains at 16.67% on each and every toss.  However, his chances of having one, two, three, four or more rolls without a 7 decreases simply because of the cumulative nature of the 7-occurrence rate.

 

       For the SRR-7 shooter, the sevens-appearance-rate is 14.29%.   As a result, his chances of having one, two, three, four or more rolls without a 7, increases slightly due to the faintly less cumulative nature of his 7-occurrence rate.

 

       Likewise for the skilled SRR-8 shooter, his per-roll sevens-appearance-rate is 12.5%.  Therefore, his chances of having one, two, three, four or more rolls without a 7 increases significantly when compared to a SRR-6 random-roller, due to his lower cumulative 7’s occurrence-rate.

 

       More over, the SRR-9 Precision-Shooter enjoys an 11.11% sevens-appearance-rate on a per-roll basis.  As a result, his chances of having one, two, three, four or more rolls without a 7, increases dramatically when compared to random expectation because of his much lower cumulative 7’s occurrence-rate.

 

When a dice-influencer looks at his skills, he obviously has to include his ability to avoid the 7 into that calculation matrix.   

       A player’s ability to avoid the 7 determines how long, on average, his point-cycle roll will usually last. 

 

       Again, we are talking averages here, so that range includes everything from all of his point-then-7-Out hands to his rarer mega and mini-mammoth ones too.

 

       Our SRR determines how frequently the 7 is likely to show up, and by logical extension, it determines how many rolls on average we will have to profitably exploit any of our betting methods.

 

Knowing this is extremely important when it comes to considering global-type multi-number bets that require numerous hits before becoming net-profitable.   Inside-Number wagers fall into this global category.  As we will see in a moment, that is why the use of steep regressions are so important to the net-profitability of skilled dice-influencers.

Inside-Numbers to Sevens

 

 

Random SRR 6

SRR 7

SRR 8

SRR 9

Inside-Numbers

18-of-36

18.43

18.75

19-of-36

Per-Roll

Probability

50.00%

51.19%

52.08%

52.78%

Inside-Numbers-to-7’s Ratio

3:1

3.6:1

4.1:1

4.75:1

 

 

 

 

 

 

As I pointed out previously, your SRR and the frequency of Inside-Numbers that you produce within that range, will be somewhat different than the even-distribution examples that I’ve used here; however, these charts will give you a general idea of where some of your biggest profit-making opportunities can be found.

Expected Return-On-Investment

for

Flat-bet $22-Inside

 

 

Random SRR 6

SRR 7

SRR 8

SRR 9

Inside-Numbers-to-7’s Ratio

3:1

3.6:1

4.1:1

4.75:1

Inside-Hit Payout/Total Wager

$7/$22

$7/$22

$7/$22

$7/$22

Expected Total Payout

$21.00

$25.20

$28.70

$33.25

Net-Profit

-$1.00

$3.20

$6.70

$11.25

Return-on-Investment

-4.54%

14.55%

30.45%

51.14%

 

 

 

 

 

 

 

       If we know how long our hand generally stays in positive-expectation territory for the Inside-Number bets we are making; then we can easily determine the ideal time to regress them from their initially high starting-value.

 

       Once we know where that positive-to-negative transition point is, we can regress our large initial wager down to a lower level and concurrently lock-in a net-profit while still providing us with active bets on the layout in the event that our hand-duration does exceed and survive that transition point, as it often will.  

A Practical Comparison

Let’s look at how this works when we compare flat-betting $110-Inside versus the use of an initial $110-Inside wager that is steeply regressed to $22-Inside at the appropriate Inside-Numbers-to-Sevens ratio trigger-point.

Flat-betting

$110-Inside

Return-on-Investment

 

 

Random SRR 6

SRR 7

SRR 8

SRR 9

I-N’s-to-7’s

3:1

3.6:1

4.1:1

4.75:1

Initial Large Bet

$110-Inside

$110-Inside

$110-Inside

$110-Inside

Single-hit Payout

$35

$35

$35

$35

Expected Flat-bet

Total Payout

$105.00

$126.00

$143.50

$166.25

Remaining Exposed Wagers

$110.00

$110.00

$110.00

$110.00

Net-Profit

-$5.00

$16.00

$33.50

$56.25

Return-on-Investment

-4.54%

14.55%

30.45%

51.14%

 

 

 

 

 

 

I deleted any further references to SRR-6 random betting in the following charts simply because it always remains in negative-expectation territory.

The following ISR chart utilizes the optimum SRR-based trigger-point at which the Large-bet-to-Small-bet regression should take place.

 

Initial Steep Regression

$110-Inside Regressed to $22-Inside

Return-on-Investment

 

 

SRR 7

SRR 8

SRR 9

I-N’s-to-7’s

3.6:1

4.1:1

4.75:1

Initial

Large Bet

$110-Inside

$110-Inside

$110-Inside

Subsequent Small Bet

$22-Inside

$22-Inside

$22-Inside

1st Hit

$35

$35

$35

2nd Hit

Post-Regression

$6.92

Weighted payout

$35

$35

3rd Hit

 

$35

$35

4th Hit

 

Post-Regression $6.69

Weighted payout

$35

5th Hit

 

 

Post-Regression $6.86

Weighted payout

Total Expected Payout

$41.92

$111.69

$146.86

Remaining Exposed Wagers

$22.00

$22.00

$22.00

Net-Profit

$19.92

$89.69

$124.86

Return-on- Investment

18.11%

81.54%

113.51%

 

 

 

 

 

Here’s a comparison between flat-betting versus the use of an Initial Steep Regression:

 

$110-Inside Flat-bet

vs.

$110-Inside Regressed to $22-Inside

 

SRR 7

SRR 8

SRR 9

$110-Inside Flat-bet

Net-Profit/Hand

$16.00

$33.50

$56.25

$110-Inside Regressed

to $22-Inside

Net-Profit/Hand

$19.92

$89.69

$124.86

$-Difference

$3.92

$56.19

$68.61

Increased

Return-on-Investment

3.56%

51.08%

62.67%

I hope you’ll join me for Part Five of this series.  Until then,

Good Luck & Good Skill at the Tables…and in Life.

Sincerely,

The Mad Professor


Back to The Mad Professor Speaks Main Page!

 

 

Dice Coach & InstructorsNewsletter / Contact / Home

Copyright 2001 - 2017, All Rights Reserved, DiceSetters.com, No Reproduction Allowed Without Prior Written Approval.

Online Since February 2001

Designed by www.MrPositive.com